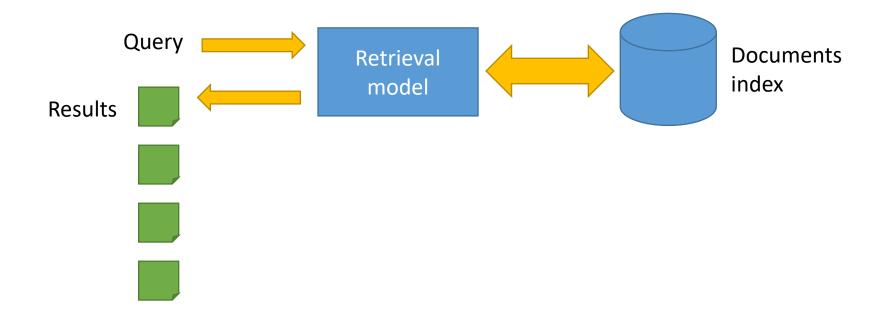
Language Models

LM Jelinek-Mercer Smoothing and LM Dirichlet Smoothing

Information Retrieval



Retrieval models

- Geometric/linear spaces
 - Vector space model
- Probability ranking principle
- Language models approach to IR
 - An important emphasis in recent work
- Probabilistic retrieval model
 - Binary independence model
 - Okapi's BM25

Recap of basic probability

Information Retrieval

Recall a few probability basics

• For events A and B, the Bayes' Rule is:

p(A,B) = p(A|B)p(B) = p(B|A)p(A) (chain rule)

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{p(A)p(B|A)}{p(B)}$$
 (Bayes' rule)

• Interpretation:

$$posterior = \frac{prior \cdot likelihood}{evidence} \Leftrightarrow p(A|B) = \frac{p(A)p(B|A)}{p(B)}$$

Recall a few probability basics

• Independence assumption:

$$p(A|B) = \frac{p(A)p(B|A)}{p(B)} = \frac{p(A)\prod_{i} p(b_{i}|A)}{\prod_{i} p(b_{i})}$$

• Odds:
$$O(A) = \frac{p(A)}{p(\bar{A})} = \frac{p(A)}{1 - p(A)}$$

$$O(A|B) = \frac{p(A|B)}{p(\bar{A}|B)} = \frac{\frac{p(A)p(B|A)}{p(B)}}{\frac{p(\bar{A})p(B|\bar{A})}{p(B)}} = \frac{p(A)p(B|A)}{p(\bar{A})p(B|\bar{A})}$$

Recall a few probability basics

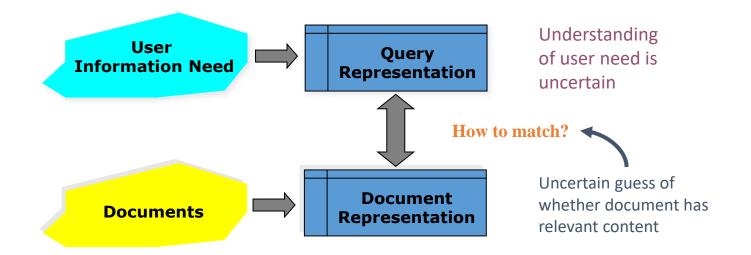
$$p(A|data) = \frac{p(A)p(data|A)}{p(data)}$$

$$p(SLB = campe\tilde{a}o|data) = \frac{p(SLB = campe\tilde{a}o)p(data|SLB = campe\tilde{a}o)}{p(data)}$$

$$aposteriori = \frac{apriori \cdot verosimilhança}{evidencia}$$

Why probabilities in IR?

 In traditional IR systems, matching between each document and query is attempted in a <u>semantically imprecise space</u> of index terms.



Probabilities provide a principled foundation for uncertain reasoning.

The document ranking problem

- We have a collection of documents
- User issues a query
- A list of documents needs to be returned
- Ranking method is the core of an IR system:
 - In what order do we present documents to the user?
 - We want the "best" document to be first, second best second, etc....

Idea: Rank by probability of relevance of the document w.r.t. information need

Modeling relevance

P(R=1|document, query)

- Let **d** represent a document in the collection.
- Let **R** represent relevance of a document w.r.t. to a query **q**
- Let **R=1** represent relevant and **R=0** not relevant.

• Our goal is to estimate:
$$p(r = 1|q, d) = \frac{p(d, q|r = 1)p(r = 1)}{p(d, q)}$$

$$p(r = 0|q, d) = \frac{p(d, q|r = 0)p(r = 0)}{p(d, q)}$$

Probability Ranking Principle (PRP)

- PRP in action: Rank all documents by p(r = 1|q, d)
 - Theorem: Using the PRP is optimal, in that it minimizes the loss (Bayes risk) under 1/0 loss
 - Provable if all probabilities correct, etc. [e.g., Ripley 1996]

$$p(r|q,d) = \frac{p(d,q|r)p(r)}{p(d,q)}$$

• Using odds, we reach a more convenient formulation of ranking :

$$O(R|q,d) = \frac{p(r=1|q,d)}{p(r=0|q,d)}$$

Probabilistic retrieval models interpretation

- PRP in action: Rank all documents by p(r = 1|q, d)
 - Theorem: Using the PRP is optimal, in that it minimizes the loss (Bayes risk) under 1/0 loss
 - Provable if all probabilities correct, etc. [e.g., Ripley 1996]

$$p(r|q,d) = \frac{p(d,q|r)p(r)}{p(d,q)}$$

• Using odds, we reach a more convenient ranking formulation:

$$O(R|q,d) = \frac{p(r=1|q,d)}{p(r=0|q,d)} \propto \frac{p(d|q,r=1)}{p(d|q,r=0)}$$

Language models interpretation

• In language models, we do a different formulation towards the query posterior given the document as a model.

$$O(R|q,d) = \frac{p(r=1|q,d)}{p(r=0|q,d)} \propto \log \frac{p(q|d,r)p(r|d)}{p(q|d,\bar{r})p(\bar{r}|d)}$$

The two families of Retrieval Models

Probability Ranking Principle

$$O(R|q,d) = \frac{p(r = 1|q,d)}{p(r = 0|q,d)}$$

Probabilistic Retrieval Models

Language Models

$$O(R|q,d) \propto \frac{p(d|q,r=1)}{p(d|q,r=0)}$$

- Vector Space Model
- Binary Independent Model
- BM25

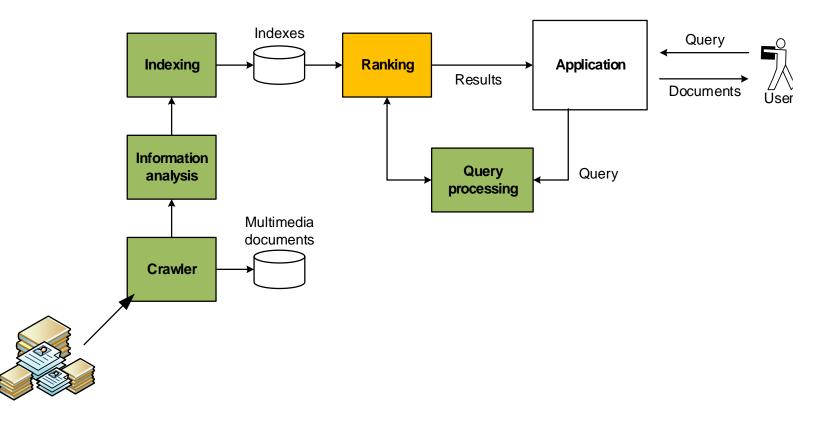
$$O(R|q,d) \propto \log \frac{p(q|d,r)p(r|d)}{p(q|d,\bar{r})p(\bar{r}|d)}$$

- LM Dirichlet
- LM Jelineck-Mercer

Language Models

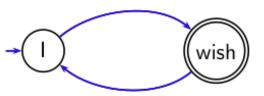
Information Retrieval

Overview



What is a language model?

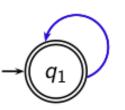
• We can view a finite state automaton as a deterministic language model.



- I wish I wish I wish I wish . . . Cannot generate: "wish I wish" or "I wish I".
- Our basic model: each document was generated by a different automaton like this except that these automata are probabilistic.

A probabilistic language model

- This is a one-state probabilistic finite-state automaton (a unigram LM) and the state emission distribution for its one state q1.
 - STOP is not a word, but a special symbol indicating that the automaton stops.



W	$P(w q_1)$	w	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
а	0.1	likes	0.02
frog	0.01	that	0.04

String = "frog said that toad likes frog STOP" P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2= 0.0000000000048

A language model per document

language model of d_1			language model of d_2				
W	P(w .)	w	P(w .)	W	P(w .)	w	P(w .)
STOP	.2	toad	.01	STOP	.2	toad	.02
the	.2	said	.03	the	.15	said	.03
а	.1	likes	.02	а	.08	likes	.02
frog	.01	that	.04	frog	.01	that	.05

String = "frog said that toad likes frog STOP"

 $\begin{aligned} &\mathsf{P}(\mathsf{string}\,|\,\mathsf{Md1}\,) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.000000000048 = 4.8 \cdot 10^{-12} \\ &\mathsf{P}(\mathsf{string}\,|\,\mathsf{Md2}\,) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.000000000120 = 12 \cdot 10^{-12} \\ &\mathsf{P}(\mathsf{string}\,|\,\mathsf{Md1}\,) < \mathsf{P}(\mathsf{string}\,|\,\mathsf{Md2}\,) \end{aligned}$

• Thus, document d2 is "more relevant" to the string "frog said that toad likes frog STOP" than d1 is.

Types of language models

- Unigrams: $p_{uni}(t_1t_2t_3t_4) = p(t_1)p(t_2)p(t_3)p(t_4)$
- Bigrams: $p_{bi}(t_1t_2t_3t_4) = p(t_1)p(t_2|t_1)p(t_3|t_2)p(t_4|t_3)$

• Multinomial distributions over words:

$$p(d) = \frac{l_d!}{f_{t_1,d}! f_{t_2,d}! \dots f_{t_n,d}!} p(t_1)^{f_{t_1,d}} p(t_2)^{f_{t_2,d}} \dots p(t_n)^{f_{t_n,d}}$$

Probability Ranking Principle (PRP)

- PRP in action: Rank all documents by p(r = 1|q, d)
 - Theorem: Using the PRP is optimal, in that it minimizes the loss (Bayes risk) under 1/0 loss
 - Provable if all probabilities correct, etc. [e.g., Ripley 1996]

$$p(r|q,d) = \frac{p(d,q|r)p(r)}{p(d,q)}$$

• Using odds, we reach a more convenient formulation of ranking :

$$O(R|q,d) = \frac{p(r=1|q,d)}{p(r=0|q,d)}$$

Language models

• In language models, we do a formulation towards the query posterior given the document as a model.

$$O(R|q,d) = \frac{p(r=1|q,d)}{p(r=0|q,d)} = \frac{p(d,q|r=1)p(r=1)}{p(d,q|r=0)p(r=0)}$$
$$= \frac{p(q|d,r)p(d|r)p(r)}{p(q|d,\bar{r})p(d|\bar{r})p(\bar{r})} \propto \log \frac{p(q|d,r)p(r|d)}{p(q|d,\bar{r})p(\bar{r}|d)}$$
$$= \log p(q|d,r) - \log p(q|d,\bar{r}) + \log \frac{p(r|d)}{p(\bar{r}|d)}$$

Language models

$$\log p(q|d,r) - \log p(q|d,\bar{r}) + \log \frac{p(r|d)}{p(\bar{r}|d)}$$
$$\approx \log p(q|d,r) + \operatorname{logit}(p(r|d))$$

- The fist term computes the probability that the query has been generated by the document model
- The second term can measure the quality of the document with respect to other indicators not contained in the query (e.g. PageRank or number of links)

How to compute p(q|d)?

• We will make the same conditional independence assumption as for Naive Bayes (we dropped the *r* variable)

$$p(q|M_d) = \prod_{i=0}^{|q|} p(t_i|M_d)$$

- |q| length of query;
- t_i the token occurring at position *i* in the query
- This is equivalent to: $p(q|M_d) = \prod_{t \in \{q \cap d\}} p(t|M_d)^{tf_{t,q}}$
 - $tf_{t,q}$ is the term frequency (# occurrences) of t in q
- Multinomial model (omitting constant factor)

Parameter estimation

• The parameters $p(t|M_d)$ are obtained from the document data as the maximum likelihood estimate:

$$p(t|M_d^{ml}) = \frac{f_{t,d}}{|d|}$$

- A single t with $p(t|M_d) = 0$ will make $p(q|M_d) = \prod p(t|M_d)$ zero.
- This can be smoothed with the prior knowledge we have about the collection.

Smoothing

- Key intuition: A non-occurring term is possible (even though it didn't occur), . . .
 - ... but no more likely than would be expected by chance in the collection.
- The maximum likelihood language model M_C^{ml} based on the term frequencies in the collection as a whole:

$$p(t|M_C^{ml}) = \frac{l_t}{l_C}$$

- l_t is the number of times the term shows up in the collection
- l_c is the number of terms in the whole collection.
- We will use $p(t|M_c^{ml})$ to "smooth" p(t|d) away from zero.

LM with Jelineck-Mercer smoothing

• The first approach we can do is to create a mixture model with both distributions:

$$p(q|d,C) = \lambda \cdot p(q|M_d) + (1-\lambda) \cdot p(q|M_c)$$

- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ: "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ: more disjunctive, suitable for long queries
- Correctly setting λ is very important for good performance.

Mixture model: Summary

• What we model: The user has some background knowledge about the collection and has a "document in mind" and generates the query from this document.

$$p(q|d,C) \approx \prod_{t \in \{q \cap d\}} \left(\lambda \cdot p(t|M_d) + (1-\lambda) \cdot p(t|M_c)\right)$$

• The equation represents the probability that the document that the user had in mind was in fact this one.

LM with Dirichlet smoothing

- We can use the prior knowledge about the mean of each term.
- The mean of the term in the collection should be our starting point when computing the term average on a document:
 - Imagine that we can add a fractional number occurrences to each term frequency.
 - Add $\mu = 1000$ occurrences of terms to a document according to the collection distribution.
 - The frequency of each term t_i would increase $\mu \cdot M_c(t_i)$
 - The length of each document increases by 1000.
- This will change the way we compute the mean of a term on a document.

Dirichlet smoothing

• We end up with the maximum a posteriori estimate of the term average:

$$p(t|M_d^{MAP}) = \frac{f_{t,d} + \mu \cdot M_c(t)}{|d| + \mu}$$

- This is equivalent to using a Dirichlet prior with appropriate parameters.
- The ranking function becomes:

$$p(q|d) = \prod_{t \in q} \left(\frac{f_{t,d} + \mu \cdot M_c(t)}{|d| + \mu} \right)^{q_t}$$

Experimental comparison

	TREC45			Gov2				
	19	998	19	99	20	05	20	06
Method	P@10	MAP	P@10	MAP	P@10	MAP	P@10	MAP
Binary	0.256	0.141	0.224	0.148	0.069	0.050	0.106	0.083
2-Poisson	0.402	0.177	0.406	0.207	0.418	0.171	0.538	0.207
BM25	0.424	0.178	0.440	0.205	0.471	0.243	0.534	0.277
LMJM	0.390	0.179	0.432	0.209	0.416	0.211	0.494	0.257
LMD	0.450	0.193	0.428	0.226	0.484	0.244	0.580	0.293
BM25F					0.482	0.242	0.544	0.277
BM25+PRF	0.452	0.239	0.454	0.249	0.567	0.277	0.588	0.314
RRF	0.462	0.215	0.464	0.252	0.543	0.297	0.570	0.352
LR			0.446	0.266			0.588	0.309
RankSVM			0.420	0.234			0.556	0.268

Experimental comparison

- For long queries, the Jelinek-Mercer smoothing performs better than the Dirichlet smoothing.
- For short queries, the Dirichlet smoothing performs better than the Jelinek-Mercer smoothing.

Method	Query	АР	Prec@10	Prec@20
LMJM	Title	0.227	0.323	0.265
LMD	Title	0.256	0.352	0.289
LMJM	Long	0.280	0.388	0.315
LMD	Long	0.279	0.373	0.303

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to information retrieval. *ACM Trans. Inf. Syst.* 22, 2 (April 2004), 179-214.

Summary

- Language Models
 - Jelinek-Mercer smoothing
 - Dirichlet smoothing
- Both models need to estimate one single parameter from the whole collection
 - (although there are known values that work well).
- References:

Sections 9.1, 9.2 and 9.3